Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Ai-Yun Fu, ${ }^{\text {a }}$ Da-Qi Wang, ${ }^{\text {b }}$ Qing-Jun Shen ${ }^{\text {a }}$ and Cun-Lan Zhang ${ }^{\text {a }}$<br>${ }^{\text {a }}$ Department of Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry,<br>Liaocheng University, Shandong Liaocheng 252059, People's Republic of China

Correspondence e-mail:
aiyunfu@yahoo.com.cn

## Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
$R$ factor $=0.032$
$w R$ factor $=0.083$
Data-to-parameter ratio $=12.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

## $\operatorname{Bis}\left(\mu-N\right.$-acetyl- $N$-phenylglycinato- $\left.\kappa^{2} O: O^{\prime}\right)$ bis[triaqua( 1,10 -phenanthroline- $\kappa^{2} N, N^{\prime}$ )lanthanum(III)] bis( $N$-acetyl- $N$-phenylglycinate) dinitrate dihydrate

In the title complex, $\left[\mathrm{La}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]$ $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{3}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, each $\mathrm{La}^{\text {III }}$ ion is nine-coordinated by four N atoms from two bidentate 1,10-phenanthroline ligands and by five O atoms (two from $N$-acetyl- $N$-phenylglycinate ligands and three from water molecules). The $\mathrm{La}^{\mathrm{III}}$ cations, which exhibit distorted tricapped trigonal prismatic coordination, are bridged by two $N$-acetyl- $N$-phenylglycinate ligands into a dimeric structure, generated by inversion symmetry. The crystal structure is stabilized by a threedimensional hydrogen-bond network.

## Comment

The formula unit of the title compound, (I) (Fig. 1), consists of an $\left[\mathrm{La}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{4+}$ cation, two $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~N}^{-}$anions, two $\mathrm{NO}_{3}{ }^{-}$anions and two uncoordinated water molecules. Each $\mathrm{La}^{\text {III }}$ ion is nine-coordinated by four N atoms ( $\mathrm{N} 2, \mathrm{~N} 3, \mathrm{~N} 4$ and N 5 ) from two 1,10-phenanthroline $\left(L_{1}\right)$ ligands (Table 1), atom O1 from the carboxylate group of an $N$-acetyl- $N$-phenylglycinate $\left(L_{2}\right)$ ligand, atom O3 ${ }^{i}$ (see Table 1 for symmetry code) from the acetyl group of another $L_{2}$ ligand and atoms O4, O5 and O6 from three water molecules. The coordination sphere around La is distorted tricapped trigonal prismatic, with the capping positions occupied by atom N3 of $L_{1}, \mathrm{~N} 4$ of another $L_{1}$ and O5 (water). The coordinated $L_{2}$ ligand bonds to one La via a carboxylate group O atom and to another La atom via an acetyl O atom, thus acting as a bridge. The overall complex cation has inversion symmetry.


The $\mathrm{La}-\mathrm{O}$ bond lengths in (I) are in the range 2.415 (2)2.553 (2) $\AA$, with a carboxylate O atom making the shortest bond. The average $\mathrm{La}-\mathrm{N}$ bond length in (I) of $2.766 \AA$ is longer than that seen $(2.666 \AA)$ in $\operatorname{bis}[\operatorname{tris}(N$-phenyl- $N$ -acetylglycine)(1,10-phenanthroline)lanthanum] (Fu et al., 2004)

The crystal packing in (I) is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). Notable among these are the O4-


Figure 1
The structure of (I), showing $50 \%$ probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
$\mathrm{H} 2 \cdots \mathrm{O} 7$ and $\mathrm{O} 5-\mathrm{H} 3 \cdots \mathrm{O} 8$ bonds from coordinated water molecules to uncoordinated $L_{2}$ molecules. Overall, a threedimensional network results.

## Experimental

$\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$ and $L_{1}(2 \mathrm{mmol})$ were dissolved in distilled water ( 20 ml ). To this solution, an aqueous mixture ( 30 ml ) of $\mathrm{H}_{2}(1 \mathrm{mmol})$ and $\mathrm{NaOH}(1 \mathrm{mmol})$ was added dropwise at 313 K . The resulting mixture was stirred for 6 h and part of the solvent was evaporated in a rotary vacuum evaporator at the same temperature. The resulting solution was filtered and the filtrate left in air for about six weeks, after which large yellow block-shaped crystals of (I) were obtained. Elemental analysis found: C 51.93 , H 4.36, N $9.64 \%$; calculated for $\mathrm{C}_{88} \mathrm{H}_{88} \mathrm{La}_{2} \mathrm{~N}_{14} \mathrm{O}_{26}$ : C 51.88, H 4.29, N $9.55 \%$.


Figure 2
The crystal packing of (I), showing the the $\mathrm{O} \cdots \mathrm{O}$ hydrogen-bonded interactions as dashed lines ( H atoms have been omitted for clarity).

## Crystal data

$\left[\mathrm{La}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}-\right.$
$\left.\quad\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{3}\right)_{2} 2^{-}$
$\quad\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=2035.54$
Triclinic, $P \overline{1}$
$a=11.4722(19) \AA$
$b=14.271(2) \AA$
$c=14.986(2) \AA$
$\alpha=66.966(2)^{\circ}$
$\beta=86.448(2)^{\circ}$
$\gamma=79.303(2)^{\circ}$

$$
\begin{aligned}
& V=2218.6(6) \AA^{3} \\
& Z=1 \\
& D_{x}=1.524 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 6354
reflections
$\theta=2.3-27.8^{\circ}$
$\mu=1.04 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, yellow
$0.45 \times 0.37 \times 0.19 \mathrm{~mm}$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.653, T_{\text {max }}=0.828$
11765 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.083$
$S=1.01$
7742 reflections
610 parameters
H atoms treated by a mixture of independent and constrained refinement

7742 independent reflections
6642 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-13 \rightarrow 13$
$k=-16 \rightarrow 16$
$l=-14 \rightarrow 17$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0434 P)^{2}\right. \\
& \quad+1.4707 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.82 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.45 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected bond distances $(\AA)$.

| La1-O1 | $2.415(2)$ | La1-N2 | $2.726(3)$ |
| :--- | :--- | :--- | :--- |
| La1-O5 | $2.483(2)$ | $\mathrm{La} 1-\mathrm{N} 4$ | $2.745(3)$ |
| La1-O3 | $2.503(2)$ | $\mathrm{La} 1-\mathrm{N} 3$ | $2.755(3)$ |
| La1-O4 | $2.542(2)$ | $\mathrm{La} 1-\mathrm{N} 5$ | $2.838(3)$ |
| La1-O6 | $2.553(2)$ |  |  |

Symmetry code: (i) $2-x,-y,-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| O4-H1 $\cdots \mathrm{O} 2$ | 0.893 (10) | 2.002 (15) | 2.855 (3) | 159 (3) |
| O4-H2 . ${ }^{\text {O }} 7$ | 0.898 (10) | 1.720 (11) | 2.616 (3) | 175 (4) |
| O5-H3 . . O 8 | 0.903 (10) | 1.706 (14) | 2.598 (4) | 169 (4) |
| $\mathrm{O} 5-\mathrm{H} 4 \cdots \mathrm{O} 10^{\text {i }}$ | 0.896 (10) | 1.888 (16) | 2.760 (4) | 164 (3) |
| O6-H5 . ${ }^{\text {O11 }}{ }^{\text {i }}$ | 0.897 (10) | 1.879 (17) | 2.744 (4) | 161 (4) |
| $\mathrm{O} 6-\mathrm{H} 14 \cdots \mathrm{O} 9^{\text {ii }}$ | 0.896 (10) | 1.843 (15) | 2.719 (3) | 165 (4) |
| $\mathrm{O} 13-\mathrm{H} 15 \cdots \mathrm{O} 12^{\mathrm{i}}$ | 0.902 (10) | 2.015 (12) | 2.910 (5) | 172 (3) |
| $\mathrm{O} 13-\mathrm{H} 16 \cdots \mathrm{O} 2^{\text {iii }}$ | 0.901 (10) | 1.948 (15) | 2.825 (4) | 164 (4) |

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1+x, y, z$; (iii) $x, 1+y, z$.

Water H atoms were found in difference maps and the $\mathrm{O}-\mathrm{H}$ distances were restrained to $0.90(1) \AA$; the $U_{\text {iso }}(\mathrm{H})$ values were allowed to refine. All other H atoms were placed in idealized posi-
tions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.97 \AA$, depending on hybridization, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

## References

Fu, A.-Y., Wang, D.-Q. \& Shen, Q.-J. (2004). Acta Cryst. E60. In the press. Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

